РП алгебра 7 кл

МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Министерство общего и профессионального образования Ростовской
области
Управление образования Администрации г. Новошахтинска
МБОУ СОШ № 1
РАССМОТРЕНО

УТВЕРЖДЕНО

и рекомендовано к утверждению
на заседании педагогического
совета

директор МБОУ СОШ № 1
________________ Рыбасова А.В
Приказ № 21 от «01» 09 2023 г.

Протокол №1 от «30» 08 2023 г.

РАБОЧАЯ ПРОГРАММА
учебного курса «Алгебра»
для обучающихся 7 классов

.

г. Новошахтинск 2023

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Алгебра является одним из опорных курсов основного общего образования: она
обеспечивает изучение других дисциплин, как естественно-научного, так и гуманитарного
циклов, её освоение необходимо для продолжения образования и в повседневной жизни.
Развитие у обучающихся научных представлений о происхождении и сущности
алгебраических абстракций, способе отражения математической наукой явлений и
процессов в природе и обществе, роли математического моделирования в научном
познании и в практике способствует формированию научного мировоззрения и качеств
мышления, необходимых для адаптации в современном цифровом обществе. Изучение
алгебры обеспечивает развитие умения наблюдать, сравнивать, находить закономерности,
требует критичности мышления, способности аргументированно обосновывать свои
действия и выводы, формулировать утверждения. Освоение курса алгебры обеспечивает
развитие логического мышления обучающихся: они используют дедуктивные и
индуктивные рассуждения, обобщение и конкретизацию, абстрагирование и аналогию.
Обучение алгебре предполагает значительный объём самостоятельной деятельности
обучающихся, поэтому самостоятельное решение задач является реализацией
деятельностного принципа обучения.
В структуре программы учебного курса «Алгебра» для основного общего
образования основное место занимают содержательно-методические линии: «Числа и
вычисления», «Алгебраические выражения», «Уравнения и неравенства», «Функции».
Каждая из этих содержательно-методических линий развивается на протяжении трёх лет
изучения курса, взаимодействуя с другими его линиями. В ходе изучения учебного курса
обучающимся приходится логически рассуждать, использовать теоретико-множественный
язык. В связи с этим в программу учебного курса «Алгебра» включены некоторые основы
логики, представленные во всех основных разделах математического образования и
способствующие овладению обучающимися основ универсального математического
языка. Содержательной и структурной особенностью учебного курса «Алгебра» является
его интегрированный характер.
Содержание линии «Числа и вычисления» служит основой для дальнейшего
изучения математики, способствует развитию у обучающихся логического мышления,
формированию умения пользоваться алгоритмами, а также приобретению практических
навыков, необходимых для повседневной жизни. Развитие понятия о числе на уровне
основного общего образования связано с рациональными и иррациональными числами,
формированием представлений о действительном числе. Завершение освоения числовой
линии отнесено к среднему общему образованию.
Содержание двух алгебраических линий – «Алгебраические выражения» и
«Уравнения и
неравенства» способствует
формированию
у обучающихся
математического аппарата, необходимого для решения задач математики, смежных
предметов и практико-ориентированных задач. На уровне основного общего образования
учебный материал группируется вокруг рациональных выражений. Алгебра
демонстрирует значение математики как языка для построения математических моделей,
описания процессов и явлений реального мира. В задачи обучения алгебре входят также
дальнейшее развитие алгоритмического мышления, необходимого, в частности, для
освоения курса информатики, и овладение навыками дедуктивных рассуждений.

Преобразование символьных форм способствует развитию воображения, способностей к
математическому творчеству.
Содержание функционально-графической линии нацелено на получение
обучающимися знаний о функциях как важнейшей математической модели для описания
и исследования разнообразных процессов и явлений в природе и обществе. Изучение
материала способствует развитию у обучающихся умения использовать различные
выразительные средства языка математики – словесные, символические, графические,
вносит вклад в формирование представлений о роли математики в развитии цивилизации
и культуры.
Согласно учебному плану в 7–9 классах изучается учебный курс «Алгебра»,
который включает следующие основные разделы содержания: «Числа и вычисления»,
«Алгебраические выражения», «Уравнения и неравенства», «Функции».
На изучение учебного курса «Алгебра» отводится 306 часов: в 7 классе – 102 часа (3
часа в неделю), в 8 классе – 102 часа (3 часа в неделю), в 9 классе – 102 часа (3 часа в
неделю).

СОДЕРЖАНИЕ ОБУЧЕНИЯ
7 КЛАСС
Числа и вычисления
Дроби обыкновенные и десятичные, переход от одной формы записи дробей к
другой. Понятие рационального числа, запись, сравнение, упорядочивание рациональных
чисел. Арифметические действия с рациональными числами. Решение задач из реальной
практики на части, на дроби.
Степень с натуральным показателем: определение, преобразование выражений на
основе определения, запись больших чисел. Проценты, запись процентов в виде дроби и
дроби в виде процентов. Три основные задачи на проценты, решение задач из реальной
практики.
Применение признаков делимости, разложение на множители натуральных чисел.
Реальные зависимости, в том числе прямая и обратная пропорциональности.
Алгебраические выражения
Переменные, числовое значение выражения с переменной. Допустимые значения
переменных. Представление зависимости между величинами в виде формулы.
Вычисления по формулам. Преобразование буквенных выражений, тождественно равные
выражения, правила преобразования сумм и произведений, правила раскрытия скобок и
приведения подобных слагаемых.
Свойства степени с натуральным показателем.
Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение
многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности.
Формула разности квадратов. Разложение многочленов на множители.
Уравнения и неравенства
Уравнение, корень уравнения, правила преобразования уравнения, равносильность
уравнений.
Линейное уравнение с одной переменной, число корней линейного уравнения,
решение линейных уравнений. Составление уравнений по условию задачи. Решение
текстовых задач с помощью уравнений.
Линейное уравнение с двумя переменными и его график. Система двух линейных
уравнений с двумя переменными. Решение систем уравнений способом подстановки.
Примеры решения текстовых задач с помощью систем уравнений.
Функции
Координата точки на прямой. Числовые промежутки. Расстояние между двумя
точками координатной прямой.
Прямоугольная система координат, оси Ox и Oy. Абсцисса и ордината точки на
координатной плоскости. Примеры графиков, заданных формулами. Чтение графиков
реальных зависимостей. Понятие функции. График функции. Свойства функций.
Линейная функция, её график. График функции y = |x|. Графическое решение линейных
уравнений и систем линейных уравнений.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ УЧЕБНОГО
КУРСА «АЛГЕБРА» НА УРОВНЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
Личностные результаты освоения программы учебного курса «Алгебра»
характеризуются:
1) патриотическое воспитание:
проявлением интереса к прошлому и настоящему российской математики,
ценностным отношением к достижениям российских математиков и российской
математической школы, к использованию этих достижений в других науках и прикладных
сферах;
2) гражданское и духовно-нравственное воспитание:
готовностью к выполнению обязанностей гражданина и реализации его прав,
представлением о математических основах функционирования различных структур,
явлений, процедур гражданского общества (например, выборы, опросы), готовностью к
обсуждению этических проблем, связанных с практическим применением достижений
науки, осознанием важности морально-этических принципов в деятельности учёного;
3) трудовое воспитание:
установкой на активное участие в решении практических задач математической
направленности, осознанием важности математического образования на протяжении всей
жизни для успешной профессиональной деятельности и развитием необходимых умений,
осознанным выбором и построением индивидуальной траектории образования и
жизненных планов с учётом личных интересов и общественных потребностей;
4) эстетическое воспитание:
способностью к эмоциональному и эстетическому восприятию математических
объектов, задач, решений, рассуждений, умению видеть математические закономерности в
искусстве;
5) ценности научного познания:
ориентацией в деятельности на современную систему научных представлений об
основных закономерностях развития человека, природы и общества, пониманием
математической науки как сферы человеческой деятельности, этапов её развития и
значимости для развития цивилизации, овладением языком математики и математической
культурой как средством познания мира, овладением простейшими навыками
исследовательской деятельности;
6)
физическое
воспитание,
формирование
культуры
здоровья
и
эмоционального благополучия:
готовностью применять математические знания в интересах своего здоровья,
ведения здорового образа жизни (здоровое питание, сбалансированный режим занятий и
отдыха, регулярная физическая активность), сформированностью навыка рефлексии,
признанием своего права на ошибку и такого же права другого человека;
7) экологическое воспитание:
ориентацией на применение математических знаний для решения задач в области
сохранности окружающей среды, планирования поступков и оценки их возможных
последствий для окружающей среды, осознанием глобального характера экологических
проблем и путей их решения;

8) адаптация к изменяющимся условиям социальной и природной среды:
готовностью к действиям в условиях неопределённости, повышению уровня своей
компетентности через практическую деятельность, в том числе умение учиться у других
людей, приобретать в совместной деятельности новые знания, навыки и компетенции из
опыта других;
необходимостью в формировании новых знаний, в том числе формулировать идеи,
понятия, гипотезы об объектах и явлениях, в том числе ранее неизвестных, осознавать
дефициты собственных знаний и компетентностей, планировать своё развитие;
способностью осознавать стрессовую ситуацию, воспринимать стрессовую
ситуацию как вызов, требующий контрмер, корректировать принимаемые решения и
действия, формулировать и оценивать риски и последствия, формировать опыт.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Познавательные универсальные учебные действия
Базовые логические действия:
 выявлять и характеризовать существенные признаки математических объектов,
понятий, отношений между понятиями, формулировать определения понятий,
устанавливать существенный признак классификации, основания для обобщения
и сравнения, критерии проводимого анализа;
 воспринимать, формулировать и преобразовывать суждения: утвердительные и
отрицательные, единичные, частные и общие, условные;
 выявлять математические закономерности, взаимосвязи и противоречия в фактах,
данных, наблюдениях и утверждениях, предлагать критерии для выявления
закономерностей и противоречий;
 делать выводы с использованием законов логики, дедуктивных и индуктивных
умозаключений, умозаключений по аналогии;
 разбирать доказательства математических утверждений (прямые и от
противного),
проводить
самостоятельно
несложные
доказательства
математических фактов, выстраивать аргументацию, приводить примеры и
контрпримеры, обосновывать собственные рассуждения;
 выбирать способ решения учебной задачи (сравнивать несколько вариантов
решения, выбирать наиболее подходящий с учётом самостоятельно выделенных
критериев).
Базовые исследовательские действия:
 использовать вопросы как исследовательский инструмент познания,
формулировать
вопросы,
фиксирующие
противоречие,
проблему,
самостоятельно устанавливать искомое и данное, формировать гипотезу,
аргументировать свою позицию, мнение;
 проводить по самостоятельно составленному плану несложный эксперимент,
небольшое исследование по установлению особенностей математического
объекта, зависимостей объектов между собой;
 самостоятельно формулировать обобщения и выводы по результатам
проведённого наблюдения, исследования, оценивать достоверность полученных
результатов, выводов и обобщений;



прогнозировать возможное развитие процесса, а также выдвигать предположения
о его развитии в новых условиях.
Работа с информацией:
 выявлять недостаточность и избыточность информации, данных, необходимых
для решения задачи;
 выбирать, анализировать, систематизировать и интерпретировать информацию
различных видов и форм представления;
 выбирать форму представления информации и иллюстрировать решаемые задачи
схемами, диаграммами, иной графикой и их комбинациями;
 оценивать надёжность информации по критериям, предложенным учителем или
сформулированным самостоятельно.
Коммуникативные универсальные учебные действия:
 воспринимать и формулировать суждения в соответствии с условиями и целями
общения, ясно, точно, грамотно выражать свою точку зрения в устных и
письменных текстах, давать пояснения по ходу решения задачи, комментировать
полученный результат;
 в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы,
решаемой задачи, высказывать идеи, нацеленные на поиск решения,
сопоставлять свои суждения с суждениями других участников диалога,
обнаруживать различие и сходство позиций, в корректной форме формулировать
разногласия, свои возражения;
 представлять результаты решения задачи, эксперимента, исследования, проекта,
самостоятельно выбирать формат выступления с учётом задач презентации и
особенностей аудитории;
 понимать и использовать преимущества командной и индивидуальной работы
при решении учебных математических задач;
 принимать цель совместной деятельности, планировать организацию совместной
работы, распределять виды работ, договариваться, обсуждать процесс и
результат работы, обобщать мнения нескольких людей;
 участвовать в групповых формах работы (обсуждения, обмен мнениями,
мозговые штурмы и другие), выполнять свою часть работы и координировать
свои действия с другими членами команды, оценивать качество своего вклада в
общий продукт по критериям, сформулированным участниками взаимодействия.
Регулятивные универсальные учебные действия
Самоорганизация:
 самостоятельно составлять план, алгоритм решения задачи (или его часть),
выбирать способ решения с учётом имеющихся ресурсов и собственных
возможностей, аргументировать и корректировать варианты решений с учётом
новой информации.
Самоконтроль, эмоциональный интеллект:
 владеть способами самопроверки, самоконтроля процесса и результата решения
математической задачи;
 предвидеть трудности, которые могут возникнуть при решении задачи, вносить
коррективы в деятельность на основе новых обстоятельств, найденных ошибок,
выявленных трудностей;



оценивать соответствие результата деятельности поставленной цели и условиям,
объяснять причины достижения или недостижения цели, находить ошибку,
давать оценку приобретённому опыту.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
К концу обучения в 7 классе обучающийся получит следующие предметные
результаты:
Числа и вычисления
Выполнять, сочетая устные и письменные приёмы, арифметические действия с
рациональными числами.
Находить значения числовых выражений, применять разнообразные способы и
приёмы вычисления значений дробных выражений, содержащих обыкновенные и
десятичные дроби.
Переходить от одной формы записи чисел к другой (преобразовывать десятичную
дробь в обыкновенную, обыкновенную в десятичную, в частности в бесконечную
десятичную дробь).
Сравнивать и упорядочивать рациональные числа.
Округлять числа.
Выполнять прикидку и оценку результата вычислений, оценку значений числовых
выражений. Выполнять действия со степенями с натуральными показателями.
Применять признаки делимости, разложение на множители натуральных чисел.
Решать практико-ориентированные задачи, связанные с отношением величин,
пропорциональностью величин, процентами, интерпретировать результаты решения задач
с учётом ограничений, связанных со свойствами рассматриваемых объектов.
Алгебраические выражения
Использовать алгебраическую терминологию и символику, применять её в процессе
освоения учебного материала.
Находить значения буквенных выражений при заданных значениях переменных.
Выполнять преобразования целого выражения в многочлен приведением подобных
слагаемых, раскрытием скобок.
Выполнять умножение одночлена на многочлен и многочлена на многочлен,
применять формулы квадрата суммы и квадрата разности.
Осуществлять разложение многочленов на множители с помощью вынесения за
скобки общего множителя, группировки слагаемых, применения формул сокращённого
умножения.
Применять преобразования многочленов для решения различных задач из
математики, смежных предметов, из реальной практики.
Использовать свойства степеней с натуральными показателями для преобразования
выражений.
Уравнения и неравенства
Решать линейные уравнения с одной переменной, применяя правила перехода от
исходного уравнения к равносильному ему. Проверять, является ли число корнем
уравнения.
Применять графические методы при решении линейных уравнений и их систем.

Подбирать примеры пар чисел, являющихся решением линейного уравнения с двумя
переменными.
Строить в координатной плоскости график линейного уравнения с двумя
переменными, пользуясь графиком, приводить примеры решения уравнения.
Решать системы двух линейных уравнений с двумя переменными, в том числе
графически.
Составлять и решать линейное уравнение или систему линейных уравнений по
условию задачи, интерпретировать в соответствии с контекстом задачи полученный
результат.
Функции
Изображать на координатной прямой точки, соответствующие заданным
координатам, лучи, отрезки, интервалы, записывать числовые промежутки на
алгебраическом языке.
Отмечать в координатной плоскости точки по заданным координатам, строить
графики линейных функций. Строить график функции y = |х|.
Описывать с помощью функций известные зависимости между величинами:
скорость, время, расстояние, цена, количество, стоимость, производительность, время,
объём работы.
Находить значение функции по значению её аргумента.
Понимать графический способ представления и анализа информации, извлекать и
интерпретировать информацию из графиков реальных процессов и зависимостей.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
Данная рабочая программа реализуется как компонент ООП МБОУ СОШ № 1 на основной
ступени.
Согласно учебному плану МБОУ СОШ №1 на изучение алгебры в 7 классе отводится 136 ч из
расчета: 3 ч в неделю – инвариантная часть и 1 час – вариативная часть по выбору щколы.
Программа будет реализована за 136 часов.

7 КЛАСС
№ п/п

Наименование разделов и тем
программы

Количество часов
Всего

Контрольные
работы

1

Выражения, тождества, уравнения

22

2

2

Функции

15

1

3

Степень с натуральным
показателем

15

1

4

Многочлены

23

2

5

Формулы сокращенного
умножения

28

2

6

Системы линейных уравнений

20

1

7

Повторение курса 7 класса

13

1

136

10

ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО
ПРОГРАММЕ

Практические
работы

0


Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».