МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Министерство общего и профессионального образования Ростовской области Управление образования Администрации г. Новошахтинска МБОУ СОШ № 1 РАССМОТРЕНО УТВЕРЖДЕНО и рекомендовано к утверждению на заседании педагогического совета директор МБОУ СОШ № 1 ________________ Рыбасова А.В Приказ № 21 от «01» 09 2023 г. Протокол №1 от «30» 08 2023 г. РАБОЧАЯ ПРОГРАММА учебного курса «Алгебра» для обучающихся 7 классов . г. Новошахтинск 2023 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Алгебра является одним из опорных курсов основного общего образования: она обеспечивает изучение других дисциплин, как естественно-научного, так и гуманитарного циклов, её освоение необходимо для продолжения образования и в повседневной жизни. Развитие у обучающихся научных представлений о происхождении и сущности алгебраических абстракций, способе отражения математической наукой явлений и процессов в природе и обществе, роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения и качеств мышления, необходимых для адаптации в современном цифровом обществе. Изучение алгебры обеспечивает развитие умения наблюдать, сравнивать, находить закономерности, требует критичности мышления, способности аргументированно обосновывать свои действия и выводы, формулировать утверждения. Освоение курса алгебры обеспечивает развитие логического мышления обучающихся: они используют дедуктивные и индуктивные рассуждения, обобщение и конкретизацию, абстрагирование и аналогию. Обучение алгебре предполагает значительный объём самостоятельной деятельности обучающихся, поэтому самостоятельное решение задач является реализацией деятельностного принципа обучения. В структуре программы учебного курса «Алгебра» для основного общего образования основное место занимают содержательно-методические линии: «Числа и вычисления», «Алгебраические выражения», «Уравнения и неравенства», «Функции». Каждая из этих содержательно-методических линий развивается на протяжении трёх лет изучения курса, взаимодействуя с другими его линиями. В ходе изучения учебного курса обучающимся приходится логически рассуждать, использовать теоретико-множественный язык. В связи с этим в программу учебного курса «Алгебра» включены некоторые основы логики, представленные во всех основных разделах математического образования и способствующие овладению обучающимися основ универсального математического языка. Содержательной и структурной особенностью учебного курса «Алгебра» является его интегрированный характер. Содержание линии «Числа и вычисления» служит основой для дальнейшего изучения математики, способствует развитию у обучающихся логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых для повседневной жизни. Развитие понятия о числе на уровне основного общего образования связано с рациональными и иррациональными числами, формированием представлений о действительном числе. Завершение освоения числовой линии отнесено к среднему общему образованию. Содержание двух алгебраических линий – «Алгебраические выражения» и «Уравнения и неравенства» способствует формированию у обучающихся математического аппарата, необходимого для решения задач математики, смежных предметов и практико-ориентированных задач. На уровне основного общего образования учебный материал группируется вокруг рациональных выражений. Алгебра демонстрирует значение математики как языка для построения математических моделей, описания процессов и явлений реального мира. В задачи обучения алгебре входят также дальнейшее развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений. Преобразование символьных форм способствует развитию воображения, способностей к математическому творчеству. Содержание функционально-графической линии нацелено на получение обучающимися знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов и явлений в природе и обществе. Изучение материала способствует развитию у обучающихся умения использовать различные выразительные средства языка математики – словесные, символические, графические, вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры. Согласно учебному плану в 7–9 классах изучается учебный курс «Алгебра», который включает следующие основные разделы содержания: «Числа и вычисления», «Алгебраические выражения», «Уравнения и неравенства», «Функции». На изучение учебного курса «Алгебра» отводится 306 часов: в 7 классе – 102 часа (3 часа в неделю), в 8 классе – 102 часа (3 часа в неделю), в 9 классе – 102 часа (3 часа в неделю). СОДЕРЖАНИЕ ОБУЧЕНИЯ 7 КЛАСС Числа и вычисления Дроби обыкновенные и десятичные, переход от одной формы записи дробей к другой. Понятие рационального числа, запись, сравнение, упорядочивание рациональных чисел. Арифметические действия с рациональными числами. Решение задач из реальной практики на части, на дроби. Степень с натуральным показателем: определение, преобразование выражений на основе определения, запись больших чисел. Проценты, запись процентов в виде дроби и дроби в виде процентов. Три основные задачи на проценты, решение задач из реальной практики. Применение признаков делимости, разложение на множители натуральных чисел. Реальные зависимости, в том числе прямая и обратная пропорциональности. Алгебраические выражения Переменные, числовое значение выражения с переменной. Допустимые значения переменных. Представление зависимости между величинами в виде формулы. Вычисления по формулам. Преобразование буквенных выражений, тождественно равные выражения, правила преобразования сумм и произведений, правила раскрытия скобок и приведения подобных слагаемых. Свойства степени с натуральным показателем. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Разложение многочленов на множители. Уравнения и неравенства Уравнение, корень уравнения, правила преобразования уравнения, равносильность уравнений. Линейное уравнение с одной переменной, число корней линейного уравнения, решение линейных уравнений. Составление уравнений по условию задачи. Решение текстовых задач с помощью уравнений. Линейное уравнение с двумя переменными и его график. Система двух линейных уравнений с двумя переменными. Решение систем уравнений способом подстановки. Примеры решения текстовых задач с помощью систем уравнений. Функции Координата точки на прямой. Числовые промежутки. Расстояние между двумя точками координатной прямой. Прямоугольная система координат, оси Ox и Oy. Абсцисса и ордината точки на координатной плоскости. Примеры графиков, заданных формулами. Чтение графиков реальных зависимостей. Понятие функции. График функции. Свойства функций. Линейная функция, её график. График функции y = |x|. Графическое решение линейных уравнений и систем линейных уравнений. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ УЧЕБНОГО КУРСА «АЛГЕБРА» НА УРОВНЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ Личностные результаты освоения программы учебного курса «Алгебра» характеризуются: 1) патриотическое воспитание: проявлением интереса к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках и прикладных сферах; 2) гражданское и духовно-нравственное воспитание: готовностью к выполнению обязанностей гражданина и реализации его прав, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (например, выборы, опросы), готовностью к обсуждению этических проблем, связанных с практическим применением достижений науки, осознанием важности морально-этических принципов в деятельности учёного; 3) трудовое воспитание: установкой на активное участие в решении практических задач математической направленности, осознанием важности математического образования на протяжении всей жизни для успешной профессиональной деятельности и развитием необходимых умений, осознанным выбором и построением индивидуальной траектории образования и жизненных планов с учётом личных интересов и общественных потребностей; 4) эстетическое воспитание: способностью к эмоциональному и эстетическому восприятию математических объектов, задач, решений, рассуждений, умению видеть математические закономерности в искусстве; 5) ценности научного познания: ориентацией в деятельности на современную систему научных представлений об основных закономерностях развития человека, природы и общества, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации, овладением языком математики и математической культурой как средством познания мира, овладением простейшими навыками исследовательской деятельности; 6) физическое воспитание, формирование культуры здоровья и эмоционального благополучия: готовностью применять математические знания в интересах своего здоровья, ведения здорового образа жизни (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность), сформированностью навыка рефлексии, признанием своего права на ошибку и такого же права другого человека; 7) экологическое воспитание: ориентацией на применение математических знаний для решения задач в области сохранности окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды, осознанием глобального характера экологических проблем и путей их решения; 8) адаптация к изменяющимся условиям социальной и природной среды: готовностью к действиям в условиях неопределённости, повышению уровня своей компетентности через практическую деятельность, в том числе умение учиться у других людей, приобретать в совместной деятельности новые знания, навыки и компетенции из опыта других; необходимостью в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы об объектах и явлениях, в том числе ранее неизвестных, осознавать дефициты собственных знаний и компетентностей, планировать своё развитие; способностью осознавать стрессовую ситуацию, воспринимать стрессовую ситуацию как вызов, требующий контрмер, корректировать принимаемые решения и действия, формулировать и оценивать риски и последствия, формировать опыт. МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ Познавательные универсальные учебные действия Базовые логические действия: выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями, формулировать определения понятий, устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа; воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие, условные; выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях, предлагать критерии для выявления закономерностей и противоречий; делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии; разбирать доказательства математических утверждений (прямые и от противного), проводить самостоятельно несложные доказательства математических фактов, выстраивать аргументацию, приводить примеры и контрпримеры, обосновывать собственные рассуждения; выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев). Базовые исследовательские действия: использовать вопросы как исследовательский инструмент познания, формулировать вопросы, фиксирующие противоречие, проблему, самостоятельно устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение; проводить по самостоятельно составленному плану несложный эксперимент, небольшое исследование по установлению особенностей математического объекта, зависимостей объектов между собой; самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений; прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях. Работа с информацией: выявлять недостаточность и избыточность информации, данных, необходимых для решения задачи; выбирать, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления; выбирать форму представления информации и иллюстрировать решаемые задачи схемами, диаграммами, иной графикой и их комбинациями; оценивать надёжность информации по критериям, предложенным учителем или сформулированным самостоятельно. Коммуникативные универсальные учебные действия: воспринимать и формулировать суждения в соответствии с условиями и целями общения, ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат; в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения, сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций, в корректной форме формулировать разногласия, свои возражения; представлять результаты решения задачи, эксперимента, исследования, проекта, самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории; понимать и использовать преимущества командной и индивидуальной работы при решении учебных математических задач; принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы, обобщать мнения нескольких людей; участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые штурмы и другие), выполнять свою часть работы и координировать свои действия с другими членами команды, оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия. Регулятивные универсальные учебные действия Самоорганизация: самостоятельно составлять план, алгоритм решения задачи (или его часть), выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации. Самоконтроль, эмоциональный интеллект: владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи; предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, найденных ошибок, выявленных трудностей; оценивать соответствие результата деятельности поставленной цели и условиям, объяснять причины достижения или недостижения цели, находить ошибку, давать оценку приобретённому опыту. ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ К концу обучения в 7 классе обучающийся получит следующие предметные результаты: Числа и вычисления Выполнять, сочетая устные и письменные приёмы, арифметические действия с рациональными числами. Находить значения числовых выражений, применять разнообразные способы и приёмы вычисления значений дробных выражений, содержащих обыкновенные и десятичные дроби. Переходить от одной формы записи чисел к другой (преобразовывать десятичную дробь в обыкновенную, обыкновенную в десятичную, в частности в бесконечную десятичную дробь). Сравнивать и упорядочивать рациональные числа. Округлять числа. Выполнять прикидку и оценку результата вычислений, оценку значений числовых выражений. Выполнять действия со степенями с натуральными показателями. Применять признаки делимости, разложение на множители натуральных чисел. Решать практико-ориентированные задачи, связанные с отношением величин, пропорциональностью величин, процентами, интерпретировать результаты решения задач с учётом ограничений, связанных со свойствами рассматриваемых объектов. Алгебраические выражения Использовать алгебраическую терминологию и символику, применять её в процессе освоения учебного материала. Находить значения буквенных выражений при заданных значениях переменных. Выполнять преобразования целого выражения в многочлен приведением подобных слагаемых, раскрытием скобок. Выполнять умножение одночлена на многочлен и многочлена на многочлен, применять формулы квадрата суммы и квадрата разности. Осуществлять разложение многочленов на множители с помощью вынесения за скобки общего множителя, группировки слагаемых, применения формул сокращённого умножения. Применять преобразования многочленов для решения различных задач из математики, смежных предметов, из реальной практики. Использовать свойства степеней с натуральными показателями для преобразования выражений. Уравнения и неравенства Решать линейные уравнения с одной переменной, применяя правила перехода от исходного уравнения к равносильному ему. Проверять, является ли число корнем уравнения. Применять графические методы при решении линейных уравнений и их систем. Подбирать примеры пар чисел, являющихся решением линейного уравнения с двумя переменными. Строить в координатной плоскости график линейного уравнения с двумя переменными, пользуясь графиком, приводить примеры решения уравнения. Решать системы двух линейных уравнений с двумя переменными, в том числе графически. Составлять и решать линейное уравнение или систему линейных уравнений по условию задачи, интерпретировать в соответствии с контекстом задачи полученный результат. Функции Изображать на координатной прямой точки, соответствующие заданным координатам, лучи, отрезки, интервалы, записывать числовые промежутки на алгебраическом языке. Отмечать в координатной плоскости точки по заданным координатам, строить графики линейных функций. Строить график функции y = |х|. Описывать с помощью функций известные зависимости между величинами: скорость, время, расстояние, цена, количество, стоимость, производительность, время, объём работы. Находить значение функции по значению её аргумента. Понимать графический способ представления и анализа информации, извлекать и интерпретировать информацию из графиков реальных процессов и зависимостей. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ Данная рабочая программа реализуется как компонент ООП МБОУ СОШ № 1 на основной ступени. Согласно учебному плану МБОУ СОШ №1 на изучение алгебры в 7 классе отводится 136 ч из расчета: 3 ч в неделю – инвариантная часть и 1 час – вариативная часть по выбору щколы. Программа будет реализована за 136 часов. 7 КЛАСС № п/п Наименование разделов и тем программы Количество часов Всего Контрольные работы 1 Выражения, тождества, уравнения 22 2 2 Функции 15 1 3 Степень с натуральным показателем 15 1 4 Многочлены 23 2 5 Формулы сокращенного умножения 28 2 6 Системы линейных уравнений 20 1 7 Повторение курса 7 класса 13 1 136 10 ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ Практические работы 0